Saturday, October 14, 2017

Machine Learning with IRIS data

ML-IrisData-

Your First Machine Learning Project in Python Step-By-Step

by Jason Brownlee https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
In [1]:
# Python version
import sys
print('Python: {}'.format(sys.version))
# scipy
import scipy
print('scipy: {}'.format(scipy.__version__))
# numpy
import numpy
print('numpy: {}'.format(numpy.__version__))
# matplotlib
import matplotlib
print('matplotlib: {}'.format(matplotlib.__version__))
# pandas
import pandas
print('pandas: {}'.format(pandas.__version__))
# scikit-learn
import sklearn
print('sklearn: {}'.format(sklearn.__version__))
Python: 3.6.0 |Anaconda 4.3.1 (64-bit)| (default, Dec 23 2016, 11:57:41) [MSC v.1900 64 bit (AMD64)]
scipy: 0.18.1
numpy: 1.11.3
matplotlib: 2.0.0
pandas: 0.19.2
sklearn: 0.18.1
In [2]:
import pandas
from pandas.tools.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
In [3]:
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
In [4]:
# shape
print(dataset.shape)
(150, 5)
In [5]:
# head
print(dataset.head(20))
    sepal-length  sepal-width  petal-length  petal-width        class
0            5.1          3.5           1.4          0.2  Iris-setosa
1            4.9          3.0           1.4          0.2  Iris-setosa
2            4.7          3.2           1.3          0.2  Iris-setosa
3            4.6          3.1           1.5          0.2  Iris-setosa
4            5.0          3.6           1.4          0.2  Iris-setosa
5            5.4          3.9           1.7          0.4  Iris-setosa
6            4.6          3.4           1.4          0.3  Iris-setosa
7            5.0          3.4           1.5          0.2  Iris-setosa
8            4.4          2.9           1.4          0.2  Iris-setosa
9            4.9          3.1           1.5          0.1  Iris-setosa
10           5.4          3.7           1.5          0.2  Iris-setosa
11           4.8          3.4           1.6          0.2  Iris-setosa
12           4.8          3.0           1.4          0.1  Iris-setosa
13           4.3          3.0           1.1          0.1  Iris-setosa
14           5.8          4.0           1.2          0.2  Iris-setosa
15           5.7          4.4           1.5          0.4  Iris-setosa
16           5.4          3.9           1.3          0.4  Iris-setosa
17           5.1          3.5           1.4          0.3  Iris-setosa
18           5.7          3.8           1.7          0.3  Iris-setosa
19           5.1          3.8           1.5          0.3  Iris-setosa
In [6]:
# descriptions
print(dataset.describe())
       sepal-length  sepal-width  petal-length  petal-width
count    150.000000   150.000000    150.000000   150.000000
mean       5.843333     3.054000      3.758667     1.198667
std        0.828066     0.433594      1.764420     0.763161
min        4.300000     2.000000      1.000000     0.100000
25%        5.100000     2.800000      1.600000     0.300000
50%        5.800000     3.000000      4.350000     1.300000
75%        6.400000     3.300000      5.100000     1.800000
max        7.900000     4.400000      6.900000     2.500000
In [7]:
# class distribution
print(dataset.groupby('class').size())
class
Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
dtype: int64
In [8]:
# box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
In [9]:
# histograms
dataset.hist()
plt.show()
In [10]:
# scatter plot matrix
scatter_matrix(dataset)
plt.show()
In [11]:
# Split-out validation dataset
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
In [14]:
print(Y_train)
['Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica'
 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica'
 'Iris-setosa' 'Iris-setosa' 'Iris-virginica' 'Iris-virginica'
 'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor'
 'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor'
 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica'
 'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor'
 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica'
 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica'
 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor'
 'Iris-setosa' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa'
 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa'
 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica'
 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa'
 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica'
 'Iris-versicolor' 'Iris-setosa']
In [15]:
print(X_train)
[[6.2 2.8 4.8 1.8]
 [5.7 2.6 3.5 1.0]
 [4.6 3.6 1.0 0.2]
 [6.9 3.1 5.4 2.1]
 [6.4 2.9 4.3 1.3]
 [4.8 3.0 1.4 0.3]
 [5.5 3.5 1.3 0.2]
 [5.4 3.9 1.7 0.4]
 [5.1 3.5 1.4 0.3]
 [7.1 3.0 5.9 2.1]
 [6.7 3.3 5.7 2.1]
 [6.8 2.8 4.8 1.4]
 [6.4 2.8 5.6 2.2]
 [6.5 3.0 5.5 1.8]
 [5.7 3.0 4.2 1.2]
 [5.0 3.3 1.4 0.2]
 [6.7 3.1 4.4 1.4]
 [6.0 2.2 4.0 1.0]
 [6.4 2.7 5.3 1.9]
 [4.7 3.2 1.6 0.2]
 [4.6 3.1 1.5 0.2]
 [5.1 3.4 1.5 0.2]
 [7.7 3.8 6.7 2.2]
 [4.3 3.0 1.1 0.1]
 [6.3 3.3 6.0 2.5]
 [5.5 2.4 3.7 1.0]
 [5.0 2.0 3.5 1.0]
 [6.5 2.8 4.6 1.5]
 [5.0 3.4 1.6 0.4]
 [4.4 2.9 1.4 0.2]
 [5.0 3.5 1.6 0.6]
 [6.7 3.1 4.7 1.5]
 [7.3 2.9 6.3 1.8]
 [5.5 2.6 4.4 1.2]
 [5.2 2.7 3.9 1.4]
 [5.7 4.4 1.5 0.4]
 [7.2 3.2 6.0 1.8]
 [5.4 3.4 1.7 0.2]
 [5.8 4.0 1.2 0.2]
 [6.1 2.6 5.6 1.4]
 [5.7 2.5 5.0 2.0]
 [4.8 3.0 1.4 0.1]
 [6.5 3.0 5.8 2.2]
 [4.6 3.2 1.4 0.2]
 [6.6 2.9 4.6 1.3]
 [6.7 3.0 5.2 2.3]
 [6.1 3.0 4.6 1.4]
 [5.7 3.8 1.7 0.3]
 [7.0 3.2 4.7 1.4]
 [4.7 3.2 1.3 0.2]
 [6.5 3.0 5.2 2.0]
 [7.7 2.6 6.9 2.3]
 [4.9 2.4 3.3 1.0]
 [4.8 3.1 1.6 0.2]
 [5.5 4.2 1.4 0.2]
 [5.6 3.0 4.1 1.3]
 [6.4 3.2 5.3 2.3]
 [5.2 3.5 1.5 0.2]
 [7.9 3.8 6.4 2.0]
 [5.8 2.8 5.1 2.4]
 [5.7 2.9 4.2 1.3]
 [5.1 3.7 1.5 0.4]
 [5.1 2.5 3.0 1.1]
 [5.0 3.4 1.5 0.2]
 [7.7 2.8 6.7 2.0]
 [7.6 3.0 6.6 2.1]
 [5.0 3.2 1.2 0.2]
 [5.4 3.7 1.5 0.2]
 [6.7 3.3 5.7 2.5]
 [6.1 2.8 4.0 1.3]
 [6.3 2.5 5.0 1.9]
 [7.4 2.8 6.1 1.9]
 [5.0 2.3 3.3 1.0]
 [5.4 3.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.6 2.8 4.9 2.0]
 [4.9 3.0 1.4 0.2]
 [5.3 3.7 1.5 0.2]
 [6.0 2.7 5.1 1.6]
 [6.8 3.2 5.9 2.3]
 [6.2 3.4 5.4 2.3]
 [5.7 2.8 4.1 1.3]
 [6.3 2.3 4.4 1.3]
 [4.9 3.1 1.5 0.1]
 [6.9 3.1 5.1 2.3]
 [5.0 3.6 1.4 0.2]
 [4.4 3.0 1.3 0.2]
 [6.0 2.9 4.5 1.5]
 [6.1 2.8 4.7 1.2]
 [6.4 2.8 5.6 2.1]
 [4.9 3.1 1.5 0.1]
 [5.6 2.9 3.6 1.3]
 [5.9 3.0 4.2 1.5]
 [6.3 2.7 4.9 1.8]
 [6.8 3.0 5.5 2.1]
 [5.5 2.3 4.0 1.3]
 [6.3 2.8 5.1 1.5]
 [4.8 3.4 1.9 0.2]
 [6.3 3.3 4.7 1.6]
 [5.6 2.5 3.9 1.1]
 [5.1 3.8 1.9 0.4]
 [5.1 3.8 1.5 0.3]
 [4.6 3.4 1.4 0.3]
 [5.7 2.8 4.5 1.3]
 [6.6 3.0 4.4 1.4]
 [5.1 3.5 1.4 0.2]
 [7.7 3.0 6.1 2.3]
 [6.1 3.0 4.9 1.8]
 [6.2 2.2 4.5 1.5]
 [6.3 3.4 5.6 2.4]
 [4.4 3.2 1.3 0.2]
 [6.5 3.2 5.1 2.0]
 [5.5 2.5 4.0 1.3]
 [6.3 2.5 4.9 1.5]
 [5.1 3.3 1.7 0.5]
 [5.8 2.7 5.1 1.9]
 [5.8 2.6 4.0 1.2]
 [6.3 2.9 5.6 1.8]
 [5.8 2.7 4.1 1.0]
 [5.0 3.0 1.6 0.2]]
In [16]:
# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
In [17]:
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
In [18]:
# evaluate each model in turn
results = []
names = []
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
 results.append(cv_results)
 names.append(name)
 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
 print(msg)
LR: 0.966667 (0.040825)
LDA: 0.975000 (0.038188)
KNN: 0.983333 (0.033333)
CART: 0.975000 (0.038188)
NB: 0.975000 (0.053359)
SVM: 0.991667 (0.025000)
In [19]:
# Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
In [20]:
# Make predictions on validation dataset
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
0.9
[[ 7  0  0]
 [ 0 11  1]
 [ 0  2  9]]
                 precision    recall  f1-score   support

    Iris-setosa       1.00      1.00      1.00         7
Iris-versicolor       0.85      0.92      0.88        12
 Iris-virginica       0.90      0.82      0.86        11

    avg / total       0.90      0.90      0.90        30

In [21]:
# Make predictions on validation dataset
lr = LogisticRegression()
lr.fit(X_train, Y_train)
predictions = lr.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
0.8
[[ 7  0  0]
 [ 0  7  5]
 [ 0  1 10]]
                 precision    recall  f1-score   support

    Iris-setosa       1.00      1.00      1.00         7
Iris-versicolor       0.88      0.58      0.70        12
 Iris-virginica       0.67      0.91      0.77        11

    avg / total       0.83      0.80      0.80        30

In [ ]:
 

No comments:

Post a Comment